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The equations of 2D magnetohydrostatic equilibrium with free (pressure) boundary condi- 
tions are expressed in inverse (i.e.. flux) coordinates for both Cartesian and axisymmetric 
geometries. The resulting quasi-linear elliptic system is solved using FAS Ml multigrid with 
line reiaxation as the smoothing procedure. If field line connectivity is specified in the 
ignorable coordinate (i.e., field shear or twist is given), the system is governed by integro- 
differential equations, which are solved in the same way. Convergence rates are generally 
excellent, though an expanding fluxtube model, which provides a particularly difficult test, 
results in somewhat slower. though still acceptable. convergence. i' 1991 .Academic Pm,, Inc. 

1. INTRODUCTION 

Magnetic fields of varying scales, strengths, and geometries are ubiquitous in the 
solar atmosphere. They may emerge from the surface most notably in active regions 
(often associated with sunspots) or, on a smaller scale, from between supergranules. 
The structures they form in the atmosphere, e,g., loops, arcades, prominences, the 
network, canopies, coronal holes, etc., are often long lived (in relation to the A&&n 
crossing time), and so static models may be appropriate. In some of these examples, 
in particular the network and canopies, the shape of the emerging magnetic struc- 
turc is probably determined by a pressure balance across the boundary between the 
magnetic region and the surrounding (comparatively) field free plasma (Fiedler and 
Cally [ 11). A free boundary problem results. 

The Grad-Shafranov (G-S) equation, which governs two-dimensional magneio- 
hydrostatic equilibrium, is a second-order nearly linear uniformly elhptic partial 
differential equation which may easily be solved using standard numericaE 
techniques in the case of fixed boundary conditions. However: the free boundary 
probiem is perhaps best formulated in terms of inverse or flux coordinates in which 
the magnetic field lines become coordinate lines. A second reason for such a trans- 
formation is that the energy equation, which one may wish to solve simuitaneously 
with the G-S equation, reduces to ODES along field lines when the radiation is 
optically thin (see Cl 1). (However, if radiative transfer effects are important. the 
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field lines are no longer thermally isolated and the energy equation can not be sim- 
plified in this way.) Finally, if steady plasma flow is allowed, Alfven’s theorem 
guarantees that there can be no cross-field component of velocity, i.e., that the fluid 
flows along field lines. These three considerations argue strongly in favour of a 
method based on magnetic field coordinates. 

In the literature, most magnetohydrostatic problems concern space filling field 
structures and therefore do not involve free boundaries. They are generally solved 
inside rectangular computational boxes, with the boundaries placed sufficiently far 
away from the region of interest that the necessarily rather artificial boundary con- 
ditions have little effect on the solution. Of the large number of studies of this type, 
we mention the magnetofrictional method of Yang et al. [2] and Klimchuk et al. 
[3], which is a pseudo-transient method based on Clebsch variables for the calcula- 
tion of force-free 3D equilibria, and the more general technique of Zwingmann [4] 
which applies Newton iteration based on an energy principle. 

Numerical solution of the free boundary problem without the use of flux coor- 
dinates has been carried out by Steiner et al. [S], who solve for emerging fluxtubes 
in the original cylindrical coordinates. However, this procedure is rather messy as 
it involves taking explicit account of the current sheet resulting from the discon- 
tinuity of the magnetic field on the boundary. A sort of “halfway house” is afforded 
by boundary fitted coordinate transformation techniques in which the boundaries 
are mapped to coordinate lines but the internal field lines (or stream lines etc.) are 
not (generally). These methods have been widely used in many contexts; see 
Thompson et al. [6] for a detailed review, and Hunt [7] and Pizzo [S] for recent 
examples which incorporate multigrid solution. Pizzo’s discussion is of particular 
relevance here as it addresses the magnetostatic fluxtube problem. Though quite 
effective and comparatively easy to implement, this approach does not supply the 
further advantages mentioned above regarding the energy and flow equations. 

Fiedler and Cally [l] implement what we shall choose to call a semi-inverse 
method in 2D, in which all field lines become coordinate lines, but where the 
second coordinate remains the usual Cartesian variable z. Solution of the resulting 
partial differential equation is carried out using non-linear over-relaxation. The 
energy and flow equations are also incorporated. 

In the formulation presented in this paper, the transformed G-S equation 
together with an accompanying arclength condition form a complicated quasi- 
linear system beyond the capabilities of most of the standard fast elliptic solvers. 
One method which remains viable though is full approximation storage (FAS) mul- 
tigrid (Brandt [9]). (A somewhat different inverse coordinate multigrid method for 
MHD was suggested by Braams [lo], but not programmed.) We implement this 
in the full multigrid (FMG) mode for both axisymmetric and 2D Cartesian models, 
and achieve generally satisfactory convergence rates. 

There has also been some interest in calculating the structure of twisted flux 
tubes where the total amount of twist along field lines is specified. In 3D dynamical 
simulations (Steinolfson and Tajima [ 111) this is treated straightforwardly, but for 
time independent 2D calculations it leads to a complicated non-linear integro- 
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differential equation with an integro-differential boundary condition (if pressure is 
prescribed on the boundary). A somewhat differert semi-inverse flux coordinate 
approach has been applied by Zweibel and Boozer [12], but solution was restricted 
to the small twist case, Using multigrid applied to our formulation this restriction 
is dropped and a representative large twist solution calculated. 

2. INVERSE COORDINATE FoRmr~r~os 

In this paper, attention is focused on two-dimensional (32) magnetohydrostatic 
equilibrium, both Cartesian and axisymmetric, with the pressure boundary 
condition 

where :, is the pPasma pressure inside the field, ,D~,,~ = B’/$ is the magneiic pressilr;: 
expressed in terms of the field strength B, and peTt is an imposed external pressrrre. 
The constant in = 47~ x lo-’ H rn-’ is the permeability of free space. 

En the cartesian scenario, with I the ignorable coordinate, the magnetic field 
can be expressed in terms of a potential 4, 

Note that C. B = 0 automatically (as required in the absence cf magnetiz 
monopoles) and B . VA = 0, meaning that A is constant on field fines and so may 
be used to label them. The steady equation of momentum conservation balances 
pressure gradient, Lorentz, and gravitational forces, 

o= -q7+~(vxB)x 

where p is the mass density and g = -gf is the gravitational acceleration. 
§~bstituti~g (2) into (3) and taking X, .r. and components, it foliaws that 

b=b(A), 4&a\ I. .~ 

which states that b is constant on field lines, 

i% ( > - = -pg, 
L -4 

(& j 
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from which the gravitational stratification of the internal plasma may be derived: 
and 

where A= $b’ (see Fiedler and Cally [l]) and Vf = a2/@v2 + ?2/dz2 is the two- 
dimensional Laplacian. The subscripts A and t on the partial derivatives indicate 
that these variables, respectively, are held constant. The elliptic equation (4~) is 
called the Grad-Shafranov equation, and is linear except for the terms on the right- 
hand side. For the moment, regard I(A) and y(A, z) as known functions. 

In order to treat the free boundary. it is found convenient to introduce coor- 
dinates based on the field lines. If A = 0 and A = A,,, represent the two bounding 
field lines, the coordinate u = A/A,,, is used. The second coordinate L’, defining 
position along each field line, need not be specified yet, but in general is given by 
some differential relation 

For example, orthogonal coordinates are generated by z.d,.aI, + u,v, = 0. In inverse 
coordinates, instead of solving for u(I,, 2) and c(-Y, z), the roles of dependent 
and independent coordinate are reversed and we seek >*(u, tj) and Z(U, 1’). With 
J= yuz, - yuzu being the Jacobian, it is easily shown that 

(6) 

Hence the Grad-Shafranov equation takes the form 

J--3~~0[(4’~+~~)~,,-2(~~,yD+-71l30j~UL,+(~~+=tj;I,C] 

-z,[(JY~ -t ~2) ylLu - 2(1>, yl. + z,z,.j ~~~~ + (~-2 + :;) J+,,] > 

= - MPA + W&,,> (7) 

where (p,)_ represents dp/du at constant Z. Together with the inverse form of (51, 
this comprises a non-linear system of differential equations for y and Z. 

Orthogonal coordinates are not ideal for our purpose. In inverse coordinates 
their defining equations becomes yU 12~ + z,rc = 0, which is strongly non-linear and 
numerically troublesome (although it does dispense with the cross derivatives in 
(7)). Furthermore, since field lines do not generally emerge from or re-enter the 
solar surface vertically, these boundaries will not be coordinate lines. One simple 
possibility is to set v =z which recovers the semi-inverse method of Fiedler and 
Cally Cl]; however, this is inappropriate if the field turns over or becomes nearly 
horizontal, and we shall not consider it further here. Instead, it is generally con- 
venient to use normalized projected arc length s defined by ds = (yz + z:)‘;’ &; i.e., 



set 1’ = 0 and L’ = 1 at the ends of each field line (e.g., where it leaves and re-enters 
the surface for a returning flux model) and require d3s:!(iz~* = 6. Thus 

Although this generally produces good results. it is obvious that for some magnetic 
configurations it will lead to the M and L coordinate hnes crossing at a fine an&, 
which both reduces resolution and interferes with convergence. In some cases this 
can be avoided by skewing the end boundaries, but if that is not feasible we mus: 
be prepared to either accept the slower convergence, or adopt a different prescrip-. 
tion fw the i‘ coordinate (see Thompson et ~i. 163 for a discussion ef Ihe 
possibilities). 

A simple means of coordinate stretching an the c direction is obtained by 
replacing (8 ,) with 

where D is chosen to provide enhanced resolution in part of the 
we may even set 4? = D( U, tl), thus achieving substantial control over the coordinate 
system used. However, convergence is adversely affected if the stretching is too 
severe, in which case focal grid refinement should be used instead ( 

The side boundary (u = 0 and u = 1) pressure condition in inverse coordinates is 

which is also non-linear. On the ends, L’ = 0 and I’ = 2, various possibilities present 
themselves, but the most obvious and easiest to implement is the Dirichlet con& 
tion where (j,, I) is specified. We shall adopt this throughout, but field angle CT 
constant total pressure conditions are also possible. 

Assuming that the angle B in cylindrical coordinates (r, 9, zi is ignorable. the 
magnetic field may be expressed in terms of a scalar potential z: 

Tt turns out that both x and fi are constan t 
Grad-Shafranov equation becomes 

on field lines. With 2 = ii’ the 

The hydrostatic equation (4b) is unchanged. 
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We now convert to inverse coordinates, with u=cY/c(,,, and the projected nor- 
malized arclength L’ being the independent variables. As before the height z will be 
used as a dependent variable. The radial distance I’ is not a suitable choice as the 
second dependent variable because I’ - U’ ” in the neighbourhood of the axis, 
making the standard finite difference representation of I’, very inaccurate for the 
first few grid points. Instead, we shall use ZD = I.‘, which avoids this difficulty. The 
equations are then 

and 

af + 4m; _ 2PdP,x, -PI - 27. 
J’ - 

en,, 
on u=l. (14) 

The Jacobian is now J= mui,. - m,z,. 

2.3. Twist and Shear Constraints: Integro-D!fferentiaI Equations 

Till now, 1 has been assumed to be given. However, physically, it is often more 
realistic to specify the total twist (cylindrical geometry) or shear (Cartesian), or in 
other words, to completely specify the field line connectivity from 2) = 0 to u = 1. For 
example, if we twist one end of a previously untwisted cylinder through an angle 
@, we know which points connect to which on the two ends, but not the value of 
/3 = rB, on the held lines. 

Let L(U) be the total .y-displacement along the field line u in the Cartesian model. 
It is a simple matter to show that 

(15) 

Similarly, in cylindrical geometry, let T(u) = @/2n be the total number of twists 
along U. Then, 

(16) 

On substituting these into the appropriate Grad-Shafranov equation ((7) or (12)) 
and the pressure boundary condition ((9) or (14)), a complicated non-linear 
integro-differential problem results. 
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3. NUMERICAL PROCEDURE 

For the reader expert in the standard multigrid concepts and terminologies 
(Brandt [9? 131; Stiiben and Trottenberg [i4])? we shall proceed immedrately to 
discuss only the details of the present implementation. owever, a brief review is 
provided in the Appendix for those less familiar with th 

Equations (7) and (8) (or (12) and (13)) are discretized using standard second 
order centered differences, whilst the u derivatives in the boundary condition (9) 
(or (14)) are expressed using the second-order three point one sided digerence. 
Coarsening is in both the u and c directions. The grids used are iabelied 
K= 0, 1, . .._ AT, progressing from coarsest to finest. With Nf and IV: denoting the 
number of intervals on the Kth grid in the u and u directions, respectively, a sepre- 
sentatlve mesh point (I$. rr) on that grid is given by (i:!Nf, j:‘NP), ! = 0, I, I.~$ AEF”a 
i=o, 1, ~..) iv;. 

Bilinear interpolation is employed within cycles. but bicubic interpolation 
was found necessary between cycles in the FMG algorithm. 
weighting. Both V and LV cycles (with a limited adaptive facil 
the V cycle with y1 = 11~ = 2 (these are the number of pr-e and post smoothing sweeps 
carried gut before descending to a coarser level and after ascending to a finer one? 
respectively) usually proves to be the most efficient, though this depends upon ;he 
particular case being run; sometimes the \tI = r2 = 1 “W cycle is marginally quicker. 
In any case, convergence in under 10 WIJ is often achier no matter wlaic~~ 
(reasonable) combination of multigrid parameters is adopted WU, or work xit. 
;: the amount of work required for one sweep on the finest grid). Convergence of Ll 
difficult models can be slower though (see Sections 4.1 and 4.2). 

Local mode analysis (Brandt [9]) of Eqs. (7) and (8) suggests that noint 
GaussAeidel is a poor error smoother if d = (J: + :f) !rf, and .B = (!:f + LF) ki 
differ substantialiy in magnitude, where 11, and /7: are he grid spacings in the !i 
and :’ directions, respectively. The geometric interpretation of these two terms LS 
clear; they are respectively the squares of the lengths, in p%ysicai space. 3:’ ;he 
L’ = constant and 14 = constant sides of a grid element. In other words, long thin grid 
elements (even in the ratio 3: 1, say) lead to poor convergence rates. On the other, 
ha.nd, a similar analysis of lexographic Gauss-Seidel horizontal line relaxation (i. e.; 
relaxing a whole line of constant u simultaneously j shows it to be a good smoother 
even if .B! 6 3 (long or closely packed field lines), whilst vertic Line relaxation ser- 
iorms well for .B Q d (short or widely spaced field lines). Dth are satisfactsry 
when sd - .2. Zebra ordering is found to be inferior for this problem. For models 
in which both regimes exist, alternating direction hne relaxation is perf80rmed ;:i.e., 
a horizontal sweep followed by a vertical sweep; greater efficiency coula be 
obtained by only performing the required sweep localiy). The pressure b~unda:y 
condition is both appended to the ends of the horizontal sweep and apphed as a 
separate vertical sweep, as required. Of course, these sweeps are performed on the 
Linearized version of the equations, and involve the solution of hex- or septdiaganai 
systems for horizontal and vertical line relaxation, respectively. fn ah cases. 1: is 



418 P. S. CALLY 

found best to apply only one Newton iteration per sweep. The solution on the 
coarsest grid K=O is obtained by simple repeated application of the relaxation 
procedure till convergence is obtained; although this may require many sweeps, it 
is cheap due to the small number of points on that mesh. 

The integro-differential systems for fields with imposed shear or twist discussed 
in Section 2.3 are solved using line relaxation along field lines, where the integrals 
JA . . . dtl are discretized using the trapezoidal rule. The resulting matrix equations 
may still be solved directly in an efficient manner. 

Errors are monitored by calculating the RMS change in position of the internal 
points after each relaxation sweep (boundary points are monitored separately). 
Define the “error” after a sweep on the Kth grid in the Cartesian geometry (and 
similarly for the axisymmetric case) by 

i 

1 NK - 1 NK - I 

E= 
k ‘c [(sy,)‘+(sz,)q 7 

(A+l)(N,K-1) i=, izl > 
(17) 

Within the FMG algorithm, convergence is deemed to have been reached at a par- 
ticular level K when the last sweep in a (V or W) cycle yields E < E, and similarly 
for the boundary error, where E is some preset tolerance (10--j in the Cartesian test 
problems, 10 -4 for the cylindrical models). Overall convergence occurs when the 
finest level K= M converges. The limited adaptive facility mentioned above 
involves: (i) performing less than vi or \t2 sweeps on coarse levels within a cycle 
when the error on that level has already been reduced to less than E, though the full 
number of sweeps is always applied on that cycle’s finest mesh; and (ii) truncating 
a cycle when the first 1~~ sweeps on its finest level have already reduced the error 
to below E, provided that at least one cycle at that level has already been completed. 

Because of the frequent jumping around between mesh levels in multigrid, it is 
not easy to define an unambiguously useful measure of convergence rate. One that 
is sometimes applied compares the error from the last sweep of the last cycle with 
that from the last sweep of the previous cycle (e.g., Hunt [7]). However, this is 
unsatisfactory when (as is usually the case) there is only one cycle on the finest 
level, since then we are comparing an error on K= M with one on K= M- 1. 
Properties of the interpolation method and differing relaxation rates on the two 
grids then intrude. Instead, we shall define a convergence factor on level K, Q(K), 
to be the ratio of the error from the last sweep on the last cycle of that level to that 
from the first sweep of that same cycle. Although this slightly underestimates the 
improvement obtained in a cycle, because it does not include the first sweep, it is 
a more consistent measure than that mentioned above. However, the most 
meaningful measures of relative speed between different methods are the total 
number of work units (WV) and the cpu time (CPU) expended in the solution, 
though even these can be misleading when drawn from particular cases. 
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4. TEST PROBLEMS AND RESULTS 

Three test problems are considered, one in Cartesian geometry and the other t~;y~ 
cylindricai. 

A well-known (Priest [ 151) exact 2D model for an evacuated arcade surrounded 
by an isothermal atmosphere with base pressure and scale height scaled to u&y, 
p ext = ec’. is 

B,= -B,sinkF e-I=. 
- 

where B, = ./Z/1. The field lines are uniformly sheared in the s direction by an 
angle y, (tan ;’ = B,jB,. = J’c). In general, this is a so-called constam-o: geld, 
becoming potential when the shear, y. vanishes. 

The test model, depicted in Fig. 1, has its inner field lines (u = 0) anchored co the 
surface I = 0 at f ?‘mln = + 1 and its outer field lines (u = 1 i at + ymaX = 2 2 The 
imposed shear is 30” ik = 1,!,;3). The end Dirichlet boundary conditions are 

f’ = ~ COS - ’ ~COS k~,,, - (COS k!‘min - COS k!‘,,,) U; 

a-5 
2 = 0 

on :=o and L’= 1. 

0 
-2 -I i 2 

FIG. 1. Converged arcade mode!. showing Geld lines and lines of consent L:. CM); every 16ih Zina 
used in the calculariox is shown. 
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TABLE I 

Arcade Model Accuracies and Convergence Rates 

Mesh size z(1,O.j) z(0, 0.5) Q 

4X4 1.73189 0.30853 
8x8 1.79552 0.34339 0.209 

16x16 1.80805 0.35113 0.254 
32x32 1.81029 0.35281 0.064 
64x64 1.81124 0.35341 0.099 

128x128 1.81156 0.35359 0.187 
Exact 1.81173 0.35368 

Nore. Q is the convergence factor (see text). 

The finest grid is 128 x 128, with no allowance being made for symmetry (the 
program is written to solve for asymmetric arcades), thus roughly doubling the 
amount of work required in this test compared to what is strictly necessary. The 
figure shows every sixteenth field line and line of equal L’, indicating that the 
elemental grid boxes are significantly longer along field lines than across them, 
especially towards the outside of the arcade. For this reason horizontal (i.e., cross- 
field) line relaxation is used. If, on the other hand, .J’,,,~~ is zero or close to it 
(filled arcade), the inner grid boxes become vanishingly short along field lines, 
necessitating the use of vertical (i.e., along field j relaxation. 

As a measure of accuracy, we compare the arcade height I( 1,0.5) and underside 
height ;(0,0.5) calculated on various grids with their exact values (Table I). The 
vi = r2 = 2 V cycle with only horizontal line relaxation is used. The convergence 
factors, Q, as described above, refer to the last cycle on each level. 

Four different methods are compared in Table II. The initial guess was the same 
in each case (the field lines being a sequence of elliptical arcs). The cpu times shown 
(CPU) were obtained on a serial machine, a DEC8700. Our calculation of WU 
takes into account only the relaxation sweeps and the restriction step, and so is an 

TABLE II 

Arcade Model Convergence for Various Multigrid Parameters 

VI ‘I2 Vert. sweep Cycle WU CPU Q 

2 2 No V 7.06 1:04 0.187 
1 1 Yes V 8.10 1: 18 0.064 
2 2 No W 8.80 1: 21 0.119 
1 1 No W 6.09 1: 00 0.264 

Note. CPU is given in minutes and seconds. Horizontal 
sweeps arc performed in all cases, but vertical sweeps only 
where indicated. 
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imperfect measure of work done; nevertheless it is probably accurare to within 
about 30 O/b. The best performances in this test were produced by 
cycie and the :11 = Ye = I W cycle, without vertical sweeps, but 
performed creditably. 

4.2. Expamiing Fh.lu?crube 

Determining the shape of variable cross-section pressure bounded flux tubes is a 
notoriousiy difffcult problem (Browning and Priest [ 16, 173 ). Indeed, 
the author’s knowledge, there are no known exact solutions outsi 
arlificial class which a field is prescribed and the required bounding pressure 
calculated a eriori. Numerical solution may be carried out in r - 2 space 
(Steiner el al. 1, or using the semi-inverse method (Fiedler [18] ). T&e former 
has the disadvantage of requiring the consideration of current sheets, whiist the 
iatter can lead to problems where the field lines becomes nearly horizontal. &‘e 
shall apply the fully inverse method. 

The example presented here concerns an untwisted hubs expanding in response to 
a decreasing external pressure. We again set peX: = eP’. The specific problem is not 
particularly relevant physically, but is just chosen to illustrate the method. Consider 
two uniform flux tubes, the first of radius R, = 4 and lying along the z-axis in L < 0, 
and ihe second of radius R,= 4ej’4 = > 5. Our task is to find :he 
expanding tube which connects them. Th e of the expansion here is quite 
severe, making it a rough test. Using a 32 x 64 fine grid, &I= 3. and a required 
accuracy of lo-‘, the solution depicted in Fig. 2 is obtained in 22.7 WU 
1 \‘I = V, = ? W cycle with vertical line relaxation only). Although slow for mul&r:d, 
ihis would be considered excellent by most st The re1ativeay lsoor 
convergence is due to quite severe grid deformation odd; in the less tes:ing 
modd R, = 1, Ri. - e5’4 = 3.49, convergence takes I 

This example is closest to the expanding flux rube models of Steiner C, 
though there are differences of detail, and so it provides one of Ihe few c 
numerical efficiency available to us. A truly fair comparison could only be matie by 
soIving for the same model on the same machine, b.ut a few general points caa be 
made. The free boundary flux tube models of Steiner e t al. converge to an acccracy 

FIG. 2. Converged expanding fluxtube model (axially symmetric ; calculated on a 33 x 64 grid. Nnre 
the large grid distortion near the top, which results in impaired convergence. 
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of 10Ps in around 75 of their iterations. Each such iteration consists of a number 
of quite complex steps involving intermediate evaluation of the current density, 
both internally and on the current sheet, and subsequent calculation of the field 
using Ampere’s law. It would appear that each iteration must involve more work, 
perhaps considerably more work, than one of our relaxation sweeps, especially if 
the semi-inverse method is used. The tubes they consider expand relatively slowly, 
much more slowly than the one shown in Fig. 2. Such models are handled par- 
ticularly easily by our method and would typically converge to the above accuracy 
in under 15 WU, i.e., under 15 equivalent relaxation sweeps on the tine grid. We 
might therefore expect the present method to have an efficiency advantage of at 
least a factor of 5, and probably much more. 

4.3. Twisted Fluxtube 

We consider an initially uniform fluxtube of length L = 4 and radius R = 1 con- 
tained by an external pressure pext = 1. A differential twist T(u)= Tee-3” with 
To = 2 is applied at one end (corresponding to a Gaussian twist profile in r at the 
ends, since u = r2 at z = 0 and L). The width of the tube then becomes non-uniform 
in order to maintain equilibrium. As explained in Section 2.3, the structure of the 
twisted tube may be found by solving a non-linear integro-differential equation. 
Our program is very inefficient for this model for two reasons. First, it does not 
take account of the symmetry about ; = L/2. Second, the arclength variable D is 
unnecessary; the semi-inverse method which solves for m(z4, z) would be quite 
adequate in this case. Nevertheless, the model serves to display the capabilities of 
the general method. 

2.0 

1.5 

0.5 

0.5 1.0 1.5 
r 

FIG. 3. Twisted flurtube model (axially symmetric), showing only the lower half of the tube (there 
is symmetry about z = 2). The curves delineate flux surfaces rather than field lines. The twist along field 
line U, where u=? on the base, is T(u)=~~F~“. Lines of equal L’ have been suppressed. 
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Figure 3 results from a tine grid of 32 x 128 with M= 3, and ~‘r = v2 = ! W’ cycits. 
Convergence to an accuracy of better than lo--” (actually 1.1 x 10-j internally and 
4 x 10-j on the boundary) is obtained in 8.5 WU. Models where /1 is prescribed 
rather than ;r generally converge even more quickly. Decreasing a, also results in 
faster convergence; for example, T, = 1 in this model takes 6 WU. 

5. CONCLUSIONS 

Although expressing the equations of magnetohydrostatics in inverse coordinates 
makes them appear more complicated, it simplifies the free boundary and applied 
twist or shear problems considerably. Solution of the resuiting non-linear partial 
differential or integro-differential equations is practical using FAS multigrid, thocgh 
the complexity of the equations results in a high operation count per sweep. 
Improvements to the methods used in this paper may rest& from (a) better 
smoothing procedures. (b) more sophisticated treatment of the twist or shear 
integrals, and (c j modifications to the definition of the variable v in some 
geometries With regard to the last of these, in many circumstances the choice c = z 
(.the semi-inverse method) will be quite adequate, and will certainly be easie: to 
program and faster to run. 

APPENDIX: MULTFGRID REVEW 

In this appendix we give a brief and necessarily incomplete account of multigrid 
methods. References to full expositions may be found in the text, and the interested 
reader is urged to consult them. However, for those with only a passing interest in 
t.he details of the numerical procedures used in this paper, the fundamental concepts 
necessary to understand Section 3 are summarized here. 

The basic idea behind multigrid hinges on the concept of error smoothing. Let 
h be the grid spacing employed in finite differencing a 2 
equation (for simplicity assume this to be the same in 
vergence rate R of iterative methods depends upon 11; 
iteration gives R -- h’ (Ames [19]). This can become prohibitively slow if h is small. 
Now, as shown by Brandt [9], the various Fourier modes of the error are reduced 
at different rates, with the long wavelength errors being responsible for the slow 
convergence. On the other hand: short wavelength errors (between 
size j are damped very rapidly, typically by an order of magnitude in 
sweeps of the iterative procedure. For this reason, we refer to Gauss-Set 
iteration procedures as smoothers. 

Basic multigrid starts with an approximation on a fine grid, performs 17~ smoorh- 
ing sweeps, then restricts the solution to the coarser grid 2h using either straight 
injection or some weighting algorithm (actually, the problems solved on the various 
grids are slightly different, to take account of the discretization errors, but this does 
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not affect the basic concepts). Then 1~~ further sweeps are made which damp errors 
between 412 and 8/r. There are only one quarter as many grid points on this level, 
SO the sweeps are quite cheap. We may then, of course, proceed to still coarser and 
cheaper grids if we wish; generally it is efficient to go right down to, say, a 3 x 3 or 
4 x 4 level where the problem is solved exactly or to some stringent accuracy. In this 
way the troublesome long wavelength errors on the line grid are greatly reduced. 

We must next return to the finest grid. This is done by stages, according to one 
of a number of possible strategies. For example, in the Vcycle algorithm, we inter- 
polate up to the second coarsest grid, perform v2 smoothing sweeps to damp errors 
introduced by the interpolation, then move up to the next level, smooth again, and 
so on. Thus, if we are using say three levels in all, labelled 2 (finest), 1, and 0, one 
V cycle consists of the following sequence: 2-lUl-2. An alternative procedure is 
the Wcycle, which, for the above example, consists of 2-1-O--&l-2. A number of 
such cycles may be necessary to achieve convergence. 

Full multigrid (FMG) involves starting with an initial guess on the coarsest 
rather than finest level and iterating to convergence (or solving directly). This is an 
efficient way to quickly improve a poor first approximation. We then interpolate up 
to Level 1 and perform as many multigrid cycles as are required for convergence on 
that grid. Interpolation to Level 2 follows, where we again cycle to convergence, 
and so on till the finest level is reached and ultimate convergence has been achieved. 
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